Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 360: 121110, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733846

RESUMEN

Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.

2.
Sci Total Environ ; 931: 172898, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697543

RESUMEN

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.

3.
Eco Environ Health ; 3(2): 117-130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38638172

RESUMEN

Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.

4.
Environ Res ; 252(Pt 2): 118905, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604480

RESUMEN

Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.

5.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572083

RESUMEN

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

6.
Environ Res ; 248: 118409, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311203

RESUMEN

A huge production of waste activated sludge (WAS) has been a burden for wastewater treatment plants (WWTPs) with high disposal cost and little benefit back to wastewater purification. The short-chain fatty acids (SCFAs) produced by a short-term acidogenic fermentation of WAS before methane production have been proven to be a high-quality carbon source available for microbial denitrification process. The dual purpose of full recovery of fermentation liquid products and facilitating disposal of residual solid waste necessitate an efficient solid-liquid separation process of short-term fermentation liquid. The transformation and loss of various soluble carbon sources between solid and liquid are very important issues for carbon recovery efficiency when combining short-term fermentation and sludge dewatering in WWTPs. Here we testified the three conventional preconditioning coagulants, Polyferric Sulfate (PFS), Poly Aluminum Chloride (PAC) and Polyacrylamide (PAM), to improve the efficiency of subsequent solid-liquid separation. The results show that conversion yield of SCFAs in the liquid phase of sludge after short-term fermentation was 195 mg COD/g VSS, when using the coagulants PFS, PAC, and PAM for recovery, the recovery ratio was 79.5%, 82.0%, and 85.9%, respectively, while the dewaterability could be improved after preconditioning short-term fermentation sludge. The complexation of Al3+/Fe3+ in metal coagulants with carboxyl groups of SCFA demonstrated by Density Functional Theory calculation led to small part of soluble carbons co-migration to the solid phase, mainly a loss of high molecular weight organic compounds (carbohydrate, proteins, humic acids), while the application of PAM had little impact on carbon recovery. Economic calculations further showed PAM preconditioning short-term fermentation liquid of WAS could achieve higher recovery benefits.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Fermentación , Carbono , Ácidos Grasos Volátiles
7.
Bioresour Technol ; 396: 130404, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336215

RESUMEN

With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.


Asunto(s)
Ácidos Alcanesulfónicos , Fuentes de Energía Bioeléctrica , Purificación del Agua , Aguas Residuales , Anaerobiosis , Fenómenos Físicos
8.
Environ Res ; 251(Pt 1): 118578, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38423498

RESUMEN

Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.

9.
Water Res ; 246: 120676, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806124

RESUMEN

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Inteligencia Artificial , Teorema de Bayes , Aprendizaje Automático , Purificación del Agua/métodos
10.
J Environ Manage ; 346: 118967, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714089

RESUMEN

Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa). Therefore, this study employed persulfate (PS) oxidation and C3-C5 incomplete-oxidative sulfate reducing bacteria (io-SRB) metabolizers to tailor SCFAs conversion from WAS fermentation. The decomposition efficiency, performance of SCFAs production was investigated. Results showed that the PS significantly promoted WAS decomposition, with a dissolution rate of 39.4%, which is 26.0% higher than the un-treated test. Furthermore, SCFAs yields were increased to 462.7 ± 42 mg COD/g VSS in PS-HBu-SRB, which was 7.4 and 2.2 times higher than that of un-treated and sole PS tests, respectively. In particular, the sum of acetate and HPr reached the peak value of 85%, indicating that HBu-SRB mediation promoted the biotransformation of HBu and macromolecular organics by reducing the [Formula: see text] restriction. Meanwhile, sulfate radical (SO4∙-)-based oxidation (SR-AOPs) was effective in the decomposition of WAS, the oxidative product, i.e., sulfate served the necessary electron acceptor for the metabolism of io-SRB. Further analysis of Mantel test revealed the cluster of the functional genus and their interaction with environmental variables. Additionally, molecular ecological network analysis explored the potential synergistic and competitive relationships between critical genera. Additionally, the potential synergistic and competitive relationships between critical genera was explored by molecular ecological network analysis. This study provides new insights into the integration of SR-AOPs with microbial mediation in accelerating SCFAs production from WAS fermentation.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Fermentación , Acetatos , Sulfatos , Concentración de Iones de Hidrógeno , Anaerobiosis
11.
J Environ Manage ; 345: 118886, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673008

RESUMEN

Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.


Asunto(s)
Compuestos de Potasio , Aguas del Alcantarillado , Ácidos Grasos Volátiles
12.
J Environ Manage ; 345: 118704, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540982

RESUMEN

Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.


Asunto(s)
Aguas del Alcantarillado , Zeolitas , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos , Bacterias/metabolismo , Metano , Biopelículas , Reactores Biológicos
13.
J Hazard Mater ; 460: 132375, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634383

RESUMEN

Gaining insight into the occurrence states of residual antibiotics is crucial to demystify their environmental behavior. However, the complexation of heteroatoms functioned on antibiotic molecules to metal ions in the water environment is not fully understood. This study reports that a fluorescence response was unexpectedly triggered by tetracycline (TC) and Al3+, serving as solid evidence to visualize the Al3+-TC coordination reaction. Differential electron absorption spectroscopy shows a quantifiable signal of the redshifted n-π* transition with a coordination reaction, which is also proportional to the fluorescence. The occurrence of Al3+-complexed TC also caused a split in retention time in liquid chromatogram. The TC ligands were re-released in the presence of stronger ligands competing for central Al3+. The complex ratio of Al3+-TC is confirmed to be 1:1 using Job's plot with a stability constant of 1.01 × 106. Quantum chemical computations coupled with Gibbs free energy analysis simulated the formation of octahedral Al3+-TC configuration through a spontaneous bidentate chelation. This study helps convey a broad consensus and opens a new door in the mechanistic study of metal-involved antibiotic transformation process, leading to a better understanding that can ultimately be essential to reach the final goal of alleviating the antibiotic crisis.


Asunto(s)
Antibacterianos , Tetraciclina , Ligandos , Fluorescencia
14.
Bioresour Technol ; 386: 129565, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506926

RESUMEN

Excessive waste-activated sludge (WAS) and insufficient carbon source (CS) for biological nitrogen removal (BNR) often coexist in municipal sewage treatment. Although the production of volatile fatty acids (VFAs) from WAS has been recognized as a promising solution, the development is limited by low VFAs production efficiency and dewatering deterioration of sludge. This study extracted the extracellular polymeric substances (EPS) from sludge by low-temperature thermal-hydrolysis (LTH) and high-speed hydro-cyclone (HSHC) pretreatment and recovered it for high-quality VFAs bio-production in thermophilic fermentation. Microbial mechanism analysis disclosed that interspecific interaction networks composed of functional flora, which accumulate VFAs by bio-converting EPS primarily and supplemented by EPS synthesis, guaranteed the efficient bio-production of VFAs. This process scheme shows promise in providing alternative denitrification CSs and avoiding deterioration of sludge dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Carbono , Concentración de Iones de Hidrógeno , Fermentación , Ácidos Grasos Volátiles
15.
Bioresour Technol ; 385: 129348, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336456

RESUMEN

Anaerobic digestion has been proved as one promising strategy to simultaneously achieve resource recovery and environmental pollution control for biosolid treatment, and adding exogenous materials is a potential alternative to promote the above process. This study investigated response mechanisms of anaerobic digestion of waste activated sludge (WAS) to particle sizes of zeolite. Results showed that the methane production reached 186.75 ± 7.62 mL/g volatile suspended solids (VSS) with zeolite of the particle size of 0.2-0.5 mm and the additive dosage of 0.1 g/g VSS, which increased by 22.08% compared to that in control. Mechanism study revealed that zeolite could improve hydrolysis, acidification, and methanogenesis stages. Rapid consumption rates of soluble polysaccharides and proteins were observed, correspondingly, the accumulations of short-chain fatty acids (SCFAs) were enhanced, and the compositions of SCFAs were optimized. Moreover, the activities of F420 increased by 28% with zeolite, and the syntrophic metabolism between bacteria and methanogens were promoted.


Asunto(s)
Aguas del Alcantarillado , Zeolitas , Aguas del Alcantarillado/microbiología , Anaerobiosis , Tamaño de la Partícula , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos
16.
Sci Total Environ ; 896: 165170, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379930

RESUMEN

Methane is one of the most promising renewable energies to alleviate energy crisis or replace fossil fuels, which can be recovered from anaerobic digestion of bio-wastes. However, the engineering application of anaerobic digestion is always hindered by low methane yield and production rate. This study revealed the roles and mechanisms of a green-prepared magnetic biochar (MBC) in promoting methane production performance from waste activated sludge. Results showed that the methane yield reached 208.7 mL/g volatile suspended solids with MBC additive dosage of 1 g/L, increasing by 22.1 % compared to that in control. Mechanism analysis demonstrated that MBC could promote hydrolysis, acidification, and methanogenesis stages. This was because the properties of biochar were upgraded by loading nano-magnetite, such as specific surface area, surface active sites, and surface functional groups, which made MBC have greater potential to mediate electron transfer. Correspondingly, the activity of α-glucosidase and protease respectively increased by 41.7 % and 50.0 %, and then the hydrolysis performances of polysaccharides and proteins were improved. Also, MBC improved the secretion of electroactive substances like humic substances and cytochrome C, which could promote extracellular electron transfer. Furthermore, Clostridium and Methanosarcina, as well-known electroactive microbes, were selectively enriched. The direct interspecies electron transfer between them was established via MBC. This study provided some scientific evidences to comprehensively understand the roles of MBC in anaerobic digestion, with important implications for achieving resource recovery and sludge stabilization.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/química , Metano/metabolismo , Fenómenos Magnéticos
17.
J Environ Manage ; 341: 118007, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148763

RESUMEN

Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.


Asunto(s)
Álcalis , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Electrólisis , Metano , Digestión
18.
Environ Res ; 231(Pt 1): 116028, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150383

RESUMEN

Landfill leachate concentrate (LLC) is a concentrated waste stream from landfill leachate treatment systems and has been recognized as a key challenge due to its high concentration of salts, heavy metals, organic matters, etc. Improper management of LLC (e.g. reinjection) would exacerbate the performance of upstream treatment processes and pose risks to the surrounding environments near landfill sites. Addressing the challenge and recovering resources from LLC have thus been attracting considerable attention. Although many LLC treatment technologies have been developed, a comprehensive discussion about the challenges still lacks. This review critically evaluates mainstream LLC treatment technologies, namely incineration, coagulation, advanced oxidation, evaporation and solidification/stabilization. We then introduce a geopolymer-based solidification (GS) process as a promising technology owning to its simple casting process and reusable final product and summarize engineering applications in China. Finally, we suggest investigating hybrid systems to minimize LLC production and achieve the on-site reuse of LLC. Collectively, this review provides useful information to guide the selection of LLC treatment technologies and suggests a sustainable alternative for large-scale application, while also highlighting the need of joint efforts in the industry to achieve efficient, ecofriendly and economical on-site management of landfill waste streams.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Incineración , Instalaciones de Eliminación de Residuos , Tecnología
19.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37149031

RESUMEN

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Asunto(s)
Desnitrificación , Electrones , Azufre , Procesos Autotróficos , Sulfuros , Reactores Biológicos , Nitrógeno
20.
Environ Res ; 233: 116084, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217125

RESUMEN

The loss and negative impacts of nitrogen from fertilized soils remain a global challenge in agricultural field. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) leaching, together with volatile ammonia loss are the main pathways of nitrogen loss. To improve nitrogen availability, alkaline biochar with improved adsorption capacities is a promising soil amendment. This study was objected to investigate the effects of alkaline biochar (ABC, pH 8.68) on nitrogen mitigation, the effects on nitrogen loss, and the interactions among the mixed soils (biochar, nitrogen fertilizer, and soil) under both pot and field experiments. From pot experiments, ABC addition resulted in the poor reservation of NH4+-N which converted to volatile NH3 under higher alkaline environments, mainly occurring in the first 3 days. But after, NO3--N could be largely retained in surface soil by ABC addition. The reservation of NO3--N by ABC offsets the loss of volatile NH3, and ABC ultimately showed positive reservations of nitrogen with fertilization. In the field experiment, the addition of urea inhibitor (UI) addition could inhibit the volatile NH3 loss caused by ABC mainly in the first week. The long-term operation demonstrated that ABC supported persistent effectiveness in reducing N loss, while UI treatment temporarily delayed the N loss through inhibition of fertilizer hydrolysis. Therefore, the addition of both ABC and UI contributed to reserve soil N in layers (0-50 cm) suitable for crop growth thus improving crops growth.


Asunto(s)
Fertilizantes , Suelo , Fertilizantes/análisis , Nitrógeno/análisis , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...